
Enhanced End of Topic Assessment

Name . Date _

Part A: Multiple-Choice Questions

Triangle XYZ has been enlarged with P as the center of dilation to form triangle X'Y'Z'.

Which conclusion is correct?

a.
$$\frac{XY}{X'Y'} = \frac{YZ}{Y'Z'} = \frac{XZ}{X'Z'}$$

b.
$$\Delta X'Y'Z' \cong \Delta XYZ$$

c.
$$\frac{YZ}{Y'Z'} = \frac{XZ}{X'Y'} = \frac{XY}{X'Z'}$$

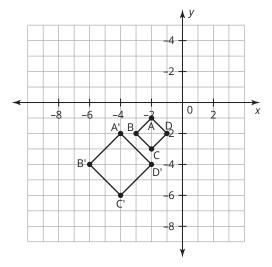
d.
$$X'X = Y'Y = Z'Z$$

2. Which transformation does **NOT** preserve congruence?

a.
$$(x, y) \to (-x, -y)$$

b.
$$(x, y) \rightarrow (x - 5, y + 2)$$

c.
$$(x, y) \to (-x, y)$$


d.
$$(x, y) \rightarrow (2x, 2y)$$

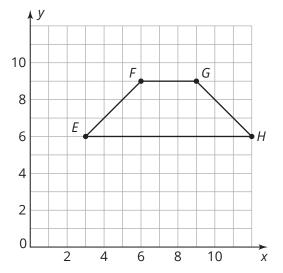
- **3.** A trapezoidal door mat is similar in shape to a trapezoidal rug. Each dimension of the door mat is $\frac{1}{3}$ the size of the rug. Which statement is true?
 - **a.** The area of the door mat is $\frac{1}{6}$ the area of the rug.
 - **b.** The area of the door mat is $\frac{1}{9}$ the area of the rug.
 - **c.** The perimeter of the door mat is $\frac{1}{6}$ the perimeter of the rug.
 - **d.** The perimeter of the door mat is $\frac{1}{9}$ the perimeter of the rug.

- **4.** A polygon is graphed on a coordinate plane with (x, y) representing the location of a certain point on the polygon. The polygon is transformed using the rule $(x, y) \rightarrow (ax, ay)$. Which statement must **NOT** be true?
 - **a.** If *a* is greater than 1, the image of the polygon is larger than the original polygon.
 - **b.** If *a* is between 0 and 1, the image of the polygon is smaller than the original polygon.
 - **c.** If *a* is greater than 1, the image of the polygon is smaller than the original polygon.
 - **d.** If *a* is equal to 1, the image of the polygon is congruent to the original polygon.

© Carnegie Learning, Inc.

Quadrilateral ABCD is dilated with the 5. origin as the center of dilation to create quadrilateral A'B'C'D'.

Which rule best represents this transformation?


a.
$$(x, y) \rightarrow \left(\frac{1}{2}x, \frac{1}{2}y\right)$$

b.
$$(x, y) \rightarrow (3x - 5, 3y - 5)$$

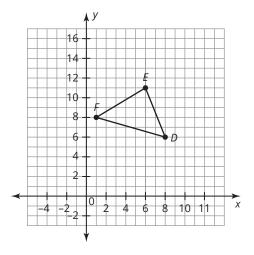
c.
$$(x, y) \rightarrow \left(x, \frac{5}{2}y\right)$$

d.
$$(x, y) \to (2x, 2y)$$

6. Trapezoid *EFGH* is transformed according to the rule $(x, y) \rightarrow \left(\frac{1}{3}x, \frac{1}{3}y\right)$ to create trapezoid *E'F'G'H'*.

Which statement is true?

- The side lengths of trapezoid *E'F'G'H'* are three times the corresponding side lengths of trapezoid *EFGH*.
- The angle measures of trapezoid *E'F'G'H'* are greater than the corresponding angle measures in trapezoid EFGH.
- The side lengths of trapezoid *E'F'G'H'* are $\frac{1}{3}$ times the corresponding side lengths of trapezoid *EFGH*.
- The angle measures of trapezoid *E'F'G'H'* are less than the corresponding angle measures of quadrilateral EFGH.


Part B: Open-Response Questions

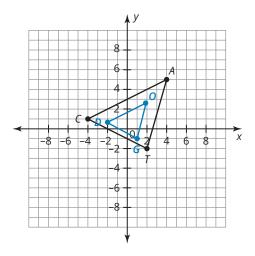
- **7.** Suppose that $\triangle FUN$ is similar to $\triangle TIP$.
 - **a.** Identify the corresponding sides.

- **b.** State the relationship between the lengths of the corresponding sides.
- **8.** Rectangle *QRST* has coordinates Q(-8, 5), R(-8, 7), S(-5, 7), and T(-5, 5). Dilate the rectangle by a scale factor of 4 with a center of dilation at the origin. Write a rule to describe this transformation and use the rule to determine the coordinates of rectangle Q'R'S'T'.

- **9.** A trapezoid has coordinates F(-9, 6), G(-6, 9), H(-3, 9), and I(0, 6).
 - **a.** Dilate the trapezoid by a scale factor of $\frac{1}{3}$ with a center of dilation at the origin. Write a rule to describe this transformation and use the rule to determine the coordinates of trapezoid F'G'H'I'.
 - **b.** Is the dilation a reduction or an enlargement? Explain your reasoning.

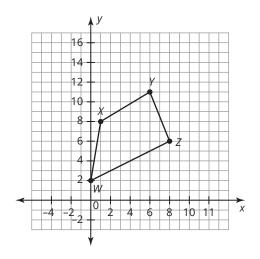
- **10.** $\triangle FED$ has vertices with coordinates F(1, 8), E(6, 11), and D(8, 6).
 - Dilate $\triangle FED$ using the origin as the center of dilation and a scale factor of $\frac{1}{2}$ to form $\Delta \textit{KIT}$ and write the algebraic rule to describe this transformation.

Is the dilation an enlargement or a reduction? Explain your reasoning.


What is the relationship between ΔFED and ΔKIT ? Explain your reasoning.

Describe the perimeter and area of ΔKIT in relation to ΔFED .

Part C: Griddable Response Questions


Record your answers and fill in the bubbles. Be sure to use the correct place value.

11. $\triangle CAT$ is dilated using the origin as the center of dilation to form $\triangle DOG$. What is the scale factor?

\oplus	0	0	0	0	0	0
\odot	1	1	1	1	1	1
	2	2	2	2	2	2
	3	3	3	3	3	3
	4	4	4	4	4	4
	(5)	(5)	(5)	(5)	(5)	(5)
	6	6	6	6	6	6
	7	7	7	7	7	7
	8	8	8	8	8	8
	9	9	9	9	9	9

12. Quadrilateral WXYZ is shown on the coordinate grid. It will be dilated with the origin as the center of dilation using the rule $(x, y) \rightarrow (ax, ay)$ to create quadrilateral W'X'Y'Z'. If vertex Y' will be located at (9, 16.5), what is the value of the scale factor a?

\vdash	\vdash	┝			·	\vdash	
$\left(+\right)$	$ 0\rangle$	0	\bigcirc	$ 0\rangle$		\bigcirc	$^{(0)}$
\odot	1	1	1	1		1	1
	2	2	2	2		2	2
	3	3	3	3		3	3
	4	4	4	4		4	4
	(5)	(5)	(5)	(5)		(5)	(5)
	6	6	6	6		6	6
	7	7	7	7		7	7
	8	8	8	8		8	8
	9	9	9	9		9	9