

Algebra II

Student Textbook Skills Program Edition SY 2022-2023

Sandy Bartle Finocchi and Amy Jones Lewis with Josh Fisher, Janet Sinopoli, and Victoria Fisher

501 Grant St., Suite 1075
Pittsburgh, PA 15219
Phone 888.851.7094
Customer Service Phone 412.690.2444
Fax 412.690.2444
www.carnegielearning.com
Cover Design by Anne Milliron

Copyright © 2021 by Carnegie Learning, Inc. All rights reserved. Carnegie Learning and MATHia are registered marks of Carnegie Learning, Inc. All other company and product names mentioned are used for identification purposes only and may be trademarks of their respective owners. Permission is granted for photocopying rights within licensed sites only. Any other usage or reproduction in any form is prohibited without the expressed consent of the publisher.

ISBN: 978-1-63862-075-4
Student Edition
Printed in the United States of America
123456789 CC 2120191817

MANIFESTO

Our Manifesto

WE BELIEVE that quality math education is important for all students, to help them develop into creative problem solvers, critical thinkers, life-long learners, and more capable adults.

WE BELIEVE that math education is about more than memorizing equations or performing on tests-it's about delivering the deep conceptual learning that supports ongoing growth and future development.

WE BELIEVE all students learn math best when teachers believe in them, expect them to participate, and encourage them to own their learning.

WE BELIEVE teachers are fundamental to student success and need powerful, flexible resources and support to build dynamic cultures of collaborative learning.

WE BELIEVE our learning solutions and services can help accomplish this, and that by working together with educators and communities we serve, we guide the way to better math learning.

LONG + LIVE + MATH

ACKNOWLEDGMENTS

High School Math Solution Authors

- Sandy Bartle Finocchi, Chief Mathematics Officer
- Amy Jones Lewis, Senior Director of Instructional Design
- Josh Fisher, Instructional Designer
- Victoria Fisher, Instructional Designer
- Janet Sinopoli, Instructional Designer

Foundational Authors

- William S. Hadley, Co-Founder
- David Dengler
- Jacyln Snyder

Vendors

- Lumina Datamatics, Ltd.
- Mathematical Expressions, LLC

Images

www.pixabay.com

Special Thanks

- Alison Huettner for project management and editorial review.
- Jacyln Snyder for her contributions to the Teacher's Implementation Guide facilitation notes.
- Harry Lynch for his contributions and review of the Statistics and Probability strand.
- Madison Kalo for her design contributions.
- The members of Carnegie Learning Cognitive Scientist Team—Brendon Towle, John Connelly, Bob Hausmann, Chas Murray, and Martina Pavelko-for their insight in learning science and collaboration on MATHia ${ }^{\circledR}$ Software.
- John Jorgenson, Chief Marketing Officer, for all his insight and messaging.
- Carnegie Learning Education Services Team for content review and providing customer feedback.
- The entire Carnegie Learning staff for their hard work and dedication to transforming math education.
- The families of the authoring team for their continued support.

Texas Math Solution Content Authors

- Tarin Barrow, STEM Instructional Designer
- Sami Briceño, Senior Custom Solution Content Lead
- Brandy King, Custom Solution Content Specialist
- Christine Mooney, Custom Solution Content Specialist

Texas Math Solution Custom Development Team

- Eddie Altomare
- Katie Barsanti
- Desiree Brown
- Allison Carden
- Courtney Comley
- Jesse Hinojosa
- Karrie Holland
- Bethany Jameson
- Steven Mendoza
- Jennifer Penton
- Jason Ulrich
- Lucy Yu
- Rob Zimmerman

Mathematics is so much more than memorizing rules. It is learning to reason, to make connections, and to make sense of the world. We believe in Learning by Doing ${ }^{T M}$-you need to actively engage with the content if you are to benefit from it. The lessons were designed to take you from your intuitive understanding of the world and build on your prior experiences to then learn new concepts. My hope is that these instructional materials help you build a deep understanding of math.

Sandy Bartle Finocchi, Chief Mathematics Officer

You have been learning math for a very long time-both in school and in your interactions in the world. You know a lot of math! In this course, there's nothing brand new. It all builds on what you already know. So, as you approach each activity, use all of your knowledge to solve problems, to ask questions, to fix mistakes, and to think creatively.

Amy Jones Lewis, Director of Instructional Design

At Carnegie Learning, we have created an organization whose mission and culture is defined by your success. Our passion is creating products that make sense of the world of mathematics and ignite a passion in you. Our hope is that you will enjoy our resources as much as we enjoyed creating them.

Barry Malkin, CEO, Carnegie Learning

Module 1: Exploring Patterns in Linear and Quadratic Relationships

Topic 1: Extending Linear Relationships

1 Gauss in Das Haus
Solving Systems of Equations
2 Make the Best of It
Optimization
3 Systems Redux
Solving Matrix Equations
4 Putting the V in Absolute Value
Defining Absolute Value Functions and Transformations
5 Play Ball!
Absolute Value Equations and Inequalities

Topic 2: Exploring and Analyzing Patterns

1 Patterns: They're Grrrrrowing!
Observing Patterns
2 The Cat's Out of the Bag!
Generating Algebraic Expressions
3 Samesies
Comparing Multiple Representations of Functions
4 True to Form
Forms of Quadratic Functions
5 The Root of the Problem
Solving Quadratic Equations
$6 \quad i$ Want to Believe
Imaginary and Complex Numbers

Topic 3: Applications of Quadratics

1 Ahead of the CurveSolving Quadratic Inequalities2 All Systems Go!Systems of Quadratic Equations
3 The Ol' Switcharoo
Inverses of Linear and Quadratic Functions
4 Modeling Behavior
Using Quadratic Functions to Model Data
5 Going the Equidistance
Equation of a Parabola
Module 2: Analyzing Structure
Topic 1: Composing and Decomposing Functions
1 Blame It on the Rain
Modeling with Functions
2 Folds, Turns, and Zeros
Transforming Function Shapes
3 Planting the Seeds
Exploring Cubic Functions
4 The Zero's the Hero
Decomposing Cubic Functions
Topic 2: Characteristics of Polynomial Functions
1 Odds and Evens
Power Functions
2 Math Class Makeover
Transformations of Polynomial Functions
3 Poly-Frog
Key Characteristics of Polynomial Functions
4 Build-a-Function
Building Cubic Functions
5 Leveled Up
Analyzing Polynomial Functions

Module 3: Developing Structural Similarities

Topic 1: Relating Factors and Zeros
1 Satisfactory Factoring
Factoring Polynomials to Identify Zeros
2 Conquer Division
Polynomial Division
3 Closing Time
The Closure Property
Topic 2: Polynomial Models
1 Not a Case of Mistaken Identity
Exploring Polynomial Identities
2 Elegant Simplicity
Pascal's Triangle and the Binomial Theorem
3 Modeling Gig
Modeling with Polynomial Functions and Data
Module 4: Extending Beyond Polynomials
Topic 1: Rational Functions
1 Can't Touch This
Introduction to Rational Functions
2 Sooooo ... CloseTransformations of Rational Functions
3 Must Be a Rational ExplanationOperations with Rational Expressions
4 Thunder. Thun- Thun- Thunder.
Solving Problems with Rational Equations
516 Tons and What Do You Get?
Solving Work, Mixture, Distance, and Cost Problems

Topic 2: Radical Functions

1 Strike That, Invert It Inverses of Power Functions

2 Such a Rad Lesson
Radical Functions
3 Making Waves
Transformations of Radical Functions
4 Keepin' It Real
Rewriting Radical Expressions
5 Into the Unknown
Solving Radical Equations

Module 5: Inverting Functions

Topic 1: Exponentials and Logarithmic Functions

1 Half-Life \quad Comparing Linear and Exponential Functions

2 Pert and Nert
Properties of Exponential Graphs
3 Return of the Inverse
Logarithmic Functions
4 I Like to Move It
Transformations of Exponential and Logarithmic Functions
5 Money, Heat, and Climate Change
Modeling Using Exponential Functions
6 Drive Responsibly
Choosing a Function to Model BAC

Topic 2: Exponential and Logarithmic Equations

1 All the Pieces of the Puzzle
Logarithmic Expressions
2 Mad Props
Properties of Logarithms
3 More Than One Way to Crack an Egg
Solving Exponential Equations
4 Logging On
Solving Logarithmic Equations
5 What's the Use?
Application of Exponential and Logarithmic Equations

Topic 3: Applications of Exponential Functions

1 Series Are Sums
Geometric Series
2 Paint By Numbers
Art and Transformations
3 This is the Title of This Lesson Fractals

End of Course Topic

Formative Assessments

1 Keep Your Eye on the Ball
Performance Task
2 Ride Like the Wind
Performance Task
3 The Correct Dose
Performance Task
4 Bug Off!
Performance Task

Glossary

Each lesson has the same structure. Key features are noted.

1. Learning Goals

Learning goals are stated for each lesson to help you take ownership of the learning objectives.

2. Connection

 Each lesson begins with a statement connecting what you have learned with a question to ponder.Return to this question at the end of this lesson to gauge your understanding.

3. Getting Started

 Each lesson begins with Getting Started. When working on Getting Started, use what you know about the world, what you have learned previously, or your intuition. The goal is just to get you thinking and ready for what's to come.

GETTING STARTED

Our Business Is Growing

The Plant-A-Seed Planter Company produces planter boxes. To make the boxes, a square is cut from each corner of a rectangular copper sheet. The sides are bent to form a rectangular prism without a top. Cutting different sized squares from the corners results in differently sized planter boxes Plant-A-Seed takes sales orders from customers who request a sized planter box.

It may help to create a model of the planter by cutting squares out of the corners of a sheet of paper and folding.

Each rectangular copper sheet is 12 inches by 18 inches. In the diagram, the solid lines indicate where the square corners are cut. where the square corners are cut,
and the dotted lines represent and the dotted lines represent
where the sides are bent for each
 planter box.

Complete the table given each planter box is made from a 12 inch by 18 inch copper sheet. Include an expression for each planter box's height, width, length, and volume for a square corner side of length h.

Square Corner Side Length (inches)	Height (inches)	Width (inches)	Length (inches)	Volume (cubic inches)
0				
1				
2				
3				
4				
5				
6				
7				
h				

[^0]

4. Activities

You are going to build a deep understanding of mathematics through a variety of activities in an environment where collaboration and conversations are important and expected.

You will learn how to solve new problems, but you will also learn why those strategies work and how they are connected to other strategies you already know.

Remember:

- It's not just about answer-getting. The process is important.
- Making mistakes is a critical part of learning, so take risks.
- There is often more than one way to solve a problem.

Activities may include real-world problems, sorting activities, worked examples, or analyzing sample student work.

Be prepared to share your solutions and methods with your classmates.

5. Talk the Talk

Talk the Talk gives you an opportunity to reflect on the main ideas of the lesson.

- Be honest with yourself.
- Ask questions to clarify anything you don't understand.
- Show what you know!

Don't forget to revisit the question posed on the lesson opening page to gauge your understanding.

ASSIGNMENT

6. Write

 Reflect on your work and clarify your thinking.
7. Remember

 Take note of the key concepts from the lesson.
8. Practice

 Use the concepts learned in the lesson to solve problems.
9. Stretch

Ready for a challenge?

10. Review

Remember what you've learned by practicing concepts from previous lessons and topics.

PROBLEM TYPES YOU WILL SEE

Worked Example

When you see a Worked Example:

- Take your time to read through it.
- Question your own understanding.
- Think about the connections between steps.

Ask Yourself:

- What is the main idea?
- How would this work if I changed the numbers?
- Have I used these strategies before?

Worked Example

You can determine the average rate of change of Zorzansa's profit for the time interval $(3.25,4.25)$.

Substitute the input and output values into the average rate of change formula.
Evaluate the expression.

$$
\begin{aligned}
\frac{f(b)-f(a)}{b-a} & =\frac{f(4.25)-f(3.25)}{4.25-3.25} \\
& =\frac{0-(-600)}{1} \\
& =\frac{600}{1}=600
\end{aligned}
$$

The average rate of change for the time interval $(3.25,4.25)$ is approximately $\$ 600,000$ per year.
4. Novena created this graph of a fourth degree polynomial. Armondo said that she is incorrect, that it is a fifth degree polynomial. Who is correct? For the student who is incorrect, explain the error in their thinking.

Novena

Armondo

Thumbs Up

When you see a Thumbs Up icon:

- Take your time to read through the correct solution.
- Think about the connections between steps.

Ask Yourself:

- Why is this method correct?
- Have I used this method before?

Augie

The cubic function $f(x)=(x-3)(x-1)(x+4)$ has the three zeros given. I can verify this by solving the equations $x-3=0, x-1=0$, and $x+4=0$.

Thumbs Down

When you see a Thumbs Down icon:

- Take your time to read through the incorrect solution.
- Think about what error was made.

Ask Yourself:

- Where is the error?
- Why is it an error?
- How can I correct it?

Emily

A cubic function must have three zeros. I Know this from the Fundamental Theorem of Algebra. However, the number of real and imaginary zeros can vary. The function may have $0,1,2$, or 3 imaginary zeros.

MATHEMATICAL PROCESS STANDARDS

Texas Mathematical Process Standards

Effective communication and collaboration are essential skills of a successful learner. With practice, you can develop the habits of mind of a productive mathematical thinker. The "I can" expectations listed below align with the TEKS Mathematical Process Standards and encourage students to develop their mathematical learning and understanding.

- Apply mathematics to problems arising in everyday life, society, and the workplace.

I can:

- use the mathematics that I learn to solve real-world problems.
- interpret mathematical results in the contexts of a variety of problem situations.
- Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying a solution, and evaluating the problem-solving process and reasonableness of the solution.

I can:

- explain what a problem "means" in my own words.
- create a plan and change it if necessary.
- ask useful questions in an attempt to understand the problem.
- explain my reasoning and defend my solution.
- reflect on whether my results make sense.
- Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate; and techniques including mental math, estimation, and number sense as appropriate, to solve problems.

I can:

- use a variety of different tools that I have to solve problems.
- recognize when a tool that I have to solve problems might be helpful and when it has limitations.
- look for efficient methods to solve problems.
- estimate before I begin calculations to inform my reasoning.
- Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.

I can:

- communicate and defend my own mathematical understanding using examples, models, or diagrams.
- use appropriate mathematical vocabulary in communicating mathematical ideas.
- make generalizations based on results.
- apply mathematical ideas to solve problems.
- interpret my results in terms of various problem situations.
- Create and use representations to organize, record, and communicate mathematical ideas.

I can:

- consider the units of measure involved in a problem.
- label diagrams and figures appropriately to clarify the meaning of different representations.
- create an understandable representation of a problem situation.

Analyze mathematical relationships to connect and communicate mathematical ideas.

I can:

- identify important relationships in a problem situation.
- use what I know to solve new problems.
- analyze and organize information.
- look closely to identify patterns or structure.
- look for general methods and more efficient ways to solve problems.

Display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication.

I can:

- work carefully and check my work.
- distinguish correct reasoning from reasoning that is flawed.
- use appropriate mathematical vocabulary when I talk with my classmates, my teacher, and others.
- specify the appropriate units of measure when I explain my reasoning.
- calculate accurately and communicate precisely to others.

ACADEMIC GLOSSARY

There are important terms you will encounter throughout this book. It is important that you have an understanding of these words as you get started on your journey through the mathematical concepts. Knowing what is meant by these terms and using these terms will help you think, reason, and communicate your ideas.

ANALYZE

Definition

To study or look closely for patterns. Analyzing can involve examining or breaking a concept down into smaller parts to gain a better understanding of it.

Ask Yourself

- Do I see any patterns?
- Have I seen something like this before?
- What happens if the shape, representation, or numbers change?

EXPLAIN YOUR REASONING

Definition

To give details or describe how to determine an answer or solution. Explaining your reasoning helps justify conclusions.

Ask Yourself

- How should I organize my thoughts?
- Is my explanation logical?
- Does my reasoning make sense?
- How can I justify my answer to others?

Visit the Students \& Caregivers Portal on the Texas Support Center at www.
CarnegieLearning.com/
texas-help to access the Mathematics Glossary for this course anytime, anywhere.

Related Phrases

- Examine
- Evaluate
- Determine
- Observe
- Consider
- Investigate
- What do you notice?
- What do you think?
- Sort and match

Related Phrases

- Show your work
- Explain your calculation
- Justify
- Why or why not?

Related Phrases

- Show
- Sketch
- Draw
- Create
- Plot
- Graph
- Write an equation
- Complete the table

Related Phrases

- Predict
- Approximate
- Expect
- About how much?

Related Phrases

- Demonstrate
- Label
- Display
- Compare
- Determine
- Define
- What are the advantages?
- What are the disadvantages?
- What is similar?
- What is different?

REPRESENT

Definition

To display information in various ways. Representing mathematics can be done using words, tables, graphs, or symbols.

Ask Yourself

- How should I organize my thoughts?
- How do I use this model to show a concept or idea?
- What does this representation tell me?
- Is my representation accurate?

ESTIMATE

Definition

To make an educated guess based on the analysis of given data. Estimating first helps inform reasoning.

Ask Yourself

- Does my reasoning make sense?
- Is my solution close to my estimation?

DESCRIBE

Definition

To represent or give an account of in words. Describing communicates mathematical ideas to others.

Ask Yourself

- How should I organize my thoughts?
- Is my explanation logical?
- Did I consider the context of the situation?
- Does my reasoning make sense?

Thought Bubbles

Look for these icons as you journey through the textbook. Sometimes they will remind you about things you already learned. Sometimes they will ask you questions to help you think about different strategies. Sometimes they will share fun facts. They are here to help and guide your learning.

side notes are included to provide helpful insights as you work.

Student Lesson Overview Videos

Each lesson has a corresponding lesson overview video(s) for you to use and reference as you are learning. The videos provide an overview of key concepts, strategies, and/or worked examples from the lessons.

Topic Summary

A Topic Summary is provided at the end of each topic. The Topic Summary lists all key terms of the topic and provides a summary of each lesson. Each lesson summary defines key terms and reviews key concepts, strategies, and/or worked examples.

Mathematics Glossary

A course-specific mathematics glossary is available to utilize and reference while you are learning. Use the glossary to locate definitions and examples of math key terms.

absolute maximum

A function has an absolute maximum if there is a point that has a y-coordinate that is greater than the y-coordinates of every other point on the graph.

Example

The ordered pair $(4,2)$ is the absolute maximum of the graph of the function $f(x)=-\frac{1}{2} x^{2}+4 x-6$.

absolute minimum
A function has an absolute minimum if there is a point that has a y-coordinate that is less than the y-coordinates of every other point on the graph.

Example

The ordered pair $(1,-4)$ is the absolute minimum of the graph of the function $y=\frac{2}{3} x^{2}-\frac{4}{3} x-\frac{10}{3}$.

Module Family and Caregiver Guides

Each module guide will provide a different highlight of the academic glossary, description and examples of TEKS Mathematical Process Standards, and an overview of a different component of our instructional approach known as The Carnegie Learning Way. Also included is a module overview of content, specific key terms, visual representations, and strategies you are learning in each topic of the module.

The purpose of the Family and Caregiver Guides is to bridge student learning in the classroom to student learning at home. Our goal is to empower you and your family to understand the concepts and skills learned in the classroom so that you can review, discuss, and solidify the understanding of these key concepts together. Videos will also be available on the Students \& Caregivers Portal on the Texas Support Center to provide added support.

Topic Family Guides

Each topic contains a Family Guide that provides an overview of the math of the topic and answers the questions, "Where have we been?" and "Where are we going?" Additional components of the Family Guide are, as follows: new notation or strategy taught in the topic, definitions of a few key terms, connection of math to the real world, related standardized test question sample, or talking points for caregivers to support your learning.

We recognize that learning outside of the classroom is crucial to student success at school. While we don't expect families and caregivers to be math teachers, the Family Guides are designed to assist families and caregivers as they talk to you about what you are learning. Our hope is that both you and your family will read and benefit from these guides.

Students and Caregivers Portal

Research has proven time and again that family engagement greatly improves a student's likelihood of success in school.

The Students \& Caregivers Portal on the Texas Support Center provides:

- Getting to Know Carnegie Learning video content to provide an introduction to the instructional materials and research.
- Articles and quick tip videos offering strategies for how families and caregivers can support student learning.
- Access to instructional resources to support students and caregivers.
To access new content and resources, visit the Students and Caregivers Portal on the Texas Support Center at https://www.CarnegieLearning.com/texas-help/studentscaregivers/

[^0]: 2 - TOPIC 1: Composing and Decomposing Functions

