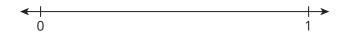

Skills Practice			
Na	me		Date
	Dividing a Whole into Fractional In the Glossary of your textbook is like a diction math terms. The pages of a glossary or disequal width.	tiona	ary, where you can look up the definitions of
1.	If a dictionary page has 3 columns, what fraction of the page is represented by 1 column?	2.	If a dictionary page has 5 columns, what fraction of the page is represented by 1 column?
3.	If a dictionary page has 4 columns, what fraction of the page is represented by 1 column?	4.	Consider the dictionary page layouts above. If the pages are all the same size, which column is the widest?
5.	If a dictionary page has 4 columns, what fraction of the page is represented by 2 columns?	6.	Write an equivalent fraction to represent how much space the 2 columns take up on the page.
7.	If a dictionary page has 6 columns, what fraction of the page is represented by 2 columns?	8.	Write an equivalent fraction to represent how much space the 2 columns take up on the page.
В.	Divide the strips into equal parts and sha	de to	determine the equivalent fraction.
1.	Show that $\frac{2}{3}$ is equivalent to $\frac{2}{9}$.		

2.	Show that $\frac{1}{4}$ is equivalent to $\frac{1}{8}$.		

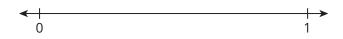
6. Show that $\frac{2}{3}$ is equivalent to $\frac{2}{6}$.

II. Benchmark Fractions

- **A.** Label the given number line to represent the fractional part provided and plot each fraction.
- **1.** Divide the number line into halves. Plot $\frac{1}{2}$.


2. Divide the number line into sixths. Plot $\frac{2}{6}$ and $\frac{5}{6}$.

3. Divide the number line into thirds. Plot $\frac{1}{3}$ and $\frac{2}{3}$.


4. Divide the number line into fifths. Plot $\frac{1}{5}$ and $\frac{3}{5}$.

5. Divide the number line into ninths. Plot $\frac{3}{9}$, $\frac{6}{9}$, and $\frac{8}{9}$.

6. Divide the number line into tenths. Plot $\frac{2}{10}$, $\frac{3}{10}$, $\frac{5}{10}$, and $\frac{9}{10}$.

3. $\frac{16}{18}$

4. $\frac{3}{5}$

5. $\frac{13}{14}$

6. $\frac{3}{61}$

C. Fill in the missing numerator or denominator so that each fraction is close to but less than $\frac{1}{2}$.

1. $\frac{1}{17}$

2. <u>4</u>

3. <u>12</u>

4. $\frac{1}{7}$

5. $\frac{}{5}$

6. 9

D. Fill in the missing numerator or denominator so that each fraction is close to but less than 1.

1. $\frac{1}{15}$

2. <u>4</u>

3. <u>8</u>

4. 11

5. $\frac{13}{13}$

6. <u>22</u>

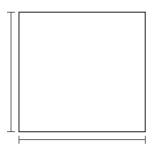
E. Rewrite each expression using benchmark fractions. Then estimate the sum.

1.
$$\frac{7}{15} + \frac{21}{23}$$

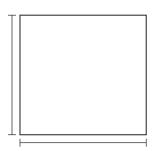
2.
$$\frac{9}{72} + \frac{23}{50}$$

3.
$$\frac{2}{41} + \frac{12}{13}$$

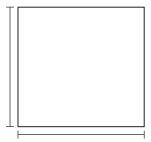
4.
$$\frac{6}{7} + \frac{11}{12} + \frac{4}{9}$$

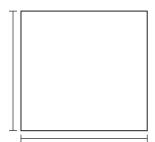

5.
$$\frac{7}{15} + \frac{8}{14} + \frac{3}{7}$$

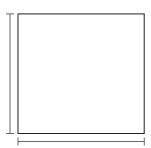
6.
$$\frac{11}{23} + \frac{13}{14} + \frac{9}{10} + \frac{2}{25}$$

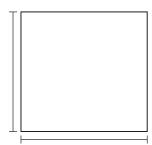

III. Multiplying Fractions

A. Represent each product using an area model. Then calculate the product.




2.
$$\frac{1}{2} \times \frac{3}{5}$$


3.
$$\frac{1}{6} \times \frac{2}{3}$$


4.
$$\frac{1}{3} \times \frac{4}{5}$$

6. $\frac{1}{2} \times \frac{5}{6}$

B. Calculate each product. Simplify if necessary.

1.
$$\frac{3}{5} \times \frac{4}{7}$$

2.
$$\frac{2}{9} \times \frac{1}{4}$$

3.
$$\frac{2}{5} \times \frac{10}{13}$$

4.
$$\frac{3}{7} \times \frac{4}{5}$$

5.
$$\frac{3}{4} \times \frac{1}{12}$$

6.
$$\frac{1}{6} \times \frac{12}{13}$$

1.
$$7 \times \frac{1}{2}$$

2.
$$\frac{4}{5} \times 8$$

4.
$$10 \times \frac{9}{10}$$

5.
$$\frac{2}{3} \times \frac{1}{2}$$

6.
$$\frac{3}{8} \times 9$$

D. Calculate each product. Write your answer in simplest form.

1.
$$3\frac{4}{5} \times 2\frac{1}{2}$$

2.
$$1\frac{3}{8} \times 6\frac{1}{4}$$

3.
$$5\frac{2}{3} \times 4\frac{1}{6}$$

4.
$$2\frac{1}{3} \times 7\frac{1}{4}$$

5.
$$6\frac{1}{2} \times 1\frac{3}{4}$$

6.
$$3\frac{1}{8} \times 5\frac{1}{2}$$

IV. Fraction by Fraction Division

A. Calculate each quotient by rewriting it as a multiplication problem. Then simplify your answer.

1.
$$\frac{7}{4} \div \frac{11}{7} = ?$$

2.
$$\frac{8}{3} \div \frac{2}{5} = ?$$

3.
$$\frac{1}{2} \div 4 = ?$$

4.
$$9 \div \frac{3}{5} = ?$$

5.
$$\frac{15}{8} \div \frac{4}{3} = ?$$

6.
$$\frac{10}{3} \div \frac{1}{6} = ?$$

B. Calculate each quotient. Simplify your answer.

1.
$$9\frac{1}{3} \div 2\frac{1}{3}$$

2.
$$10\frac{1}{5} \div 3\frac{2}{5}$$

3.
$$19 \div 6\frac{1}{4}$$

4.
$$12\frac{1}{2} \div 2\frac{1}{3}$$

Topic 2 POSITIVE RATIONAL NUMBERS

5.
$$15\frac{2}{3} \div 4\frac{5}{6}$$

6.
$$5\frac{1}{2} \div 1\frac{1}{4}$$

- **c.** Solve each problem.
- **1.** Hector has 6 cups of popcorn. How many friends can he share the popcorn with if each is given $\frac{2}{3}$ cup?

2. Sherwin has 3 cups of grapes. He likes to pack $\frac{3}{4}$ cup of fruit in his lunch each day. How many days can Sherwin pack grapes in his lunch?

3. Lea has $\frac{3}{4}$ cup of laundry detergent left in the detergent bottle. Each load of laundry requires $\frac{1}{6}$ cup of detergent. How many loads of laundry can Lea wash?

4. LaVonne has $\frac{4}{5}$ cup of blueberries. A batch of blueberry muffins requires $\frac{1}{3}$ cup of blueberries. How many batches of blueberry muffins can LaVonne make?

5. Nina has $\frac{2}{3}$ cup of shampoo left in the shampoo bottle. She uses $\frac{1}{8}$ cup of shampoo to wash her hair. If Nina washes her hair every day, how many days can she wait before opening a new bottle of shampoo?

6. Carmen has 5 pints of strawberries. She needs $\frac{3}{2}$ pints to make a batch of strawberry ice cream. How many batches of strawberry ice cream can Carmen make?