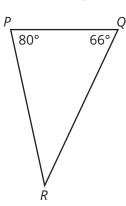
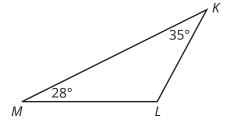
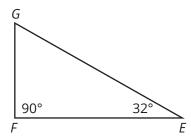

Skills Practice

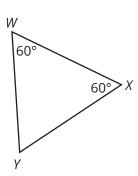
Name ______ Date _____

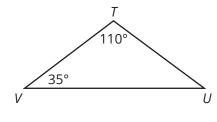

I. Triangle Sum and Exterior Angle Theorems

A. Determine the measure of the unknown angle in each triangle.

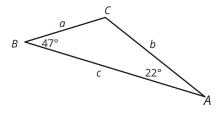

1.

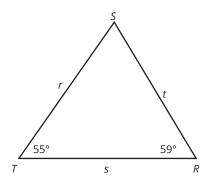

2.


3.

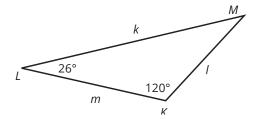


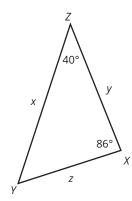
4.

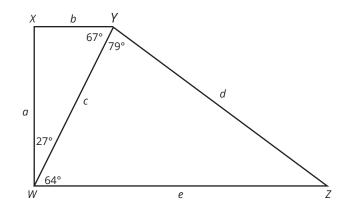

_

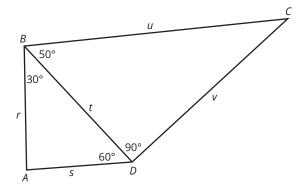


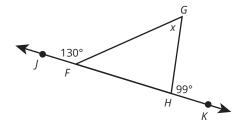
B. Determine the measure of each unknown angle. List the side lengths from shortest to longest for each diagram. Explain your reasoning.

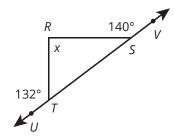

1.

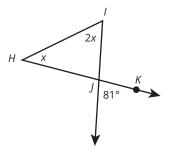

2.

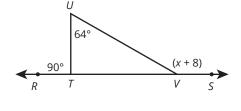


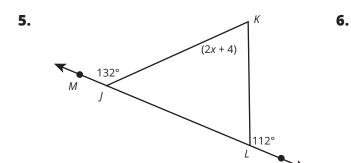

3.

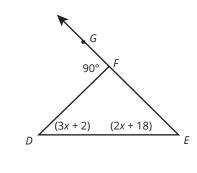

4



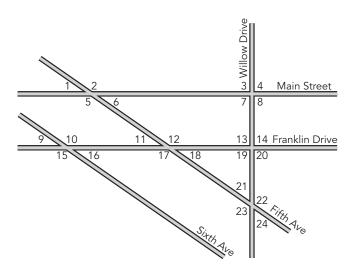

1.




2.



3.

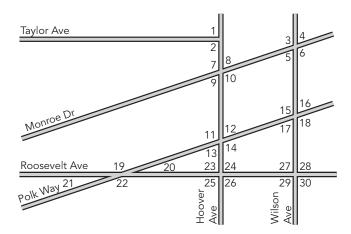


II. Angle Relationships Formed by Lines Intersected by a Transversal

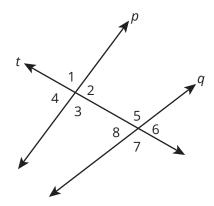
A. Use the map to give an example of each relationship.

1. congruent angles

2. vertical angles


3. supplementary angles

4. linear pair


5. adjacent angles

6. corresponding angles

B. Use the map to answer each question. Assume the streets extend beyond the edges of the map. Explain your reasoning.

- **1.** Identify each street that is a transversal **2.** to Hoover and Wilson.
- **2.** Identify each street that is not a transversal to Hoover and Wilson.
- **3.** Identify each street that is a transversal **4.** to Monroe and Polk.
 - **4.** Identify each street that is not a transversal to Monroe and Polk.
- **5.** Identify all the angles that are sameside exterior to ∠11.
- **6.** Identify all the angles that are alternate interior to ∠11.
- **7.** Identify all the angles that are corresponding to ∠11.
- **8.** Identify all the angles that are vertical to ∠11.

1. angle 1 and angle 2

2. angle 1 and angle 3

3. angle 1 and angle 6

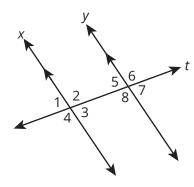
4. angle 3 and angle 7

5. angle 2 and angle 8

6. angle 1 and angle 7

7. angle 4 and angle 7

8. angle 6 and angle 8

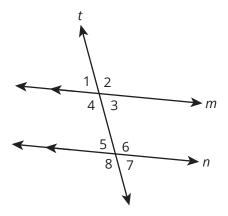

9. angle 3 and angle 4

10. angle 2 and angle 6

11. angle 2 and angle 5

12. angle 3 and angle 5

D. Use the diagram to answer each question.

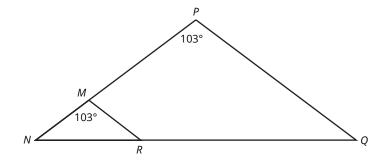


- **1.** Identify the angles that are congruent to $\angle 6$.
- **2.** Identify the angles that are supplementary to $\angle 6$.

- **3.** Identify the angles that are neither congruent nor supplementary to $\angle 6$.
- **4.** Identify the angles that are congruent to $\angle 3$.

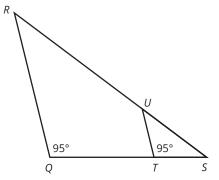
- **5.** Identify the angles that are supplementary to $\angle 3$.
- **6.** Identify the angles that are neither congruent nor supplementary to $\angle 3$.

E. In the diagram, transversal t intersects parallel lines m and n. Suppose that the measure of $\angle 4$ is 106°. Classify the given angle pair. Then determine each measure.



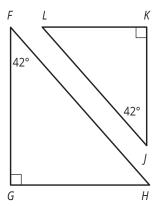
- **1.** ∠4 and ∠1, m∠1 = _____
- **2.** ∠4 and ∠2, m∠2 = _____
- **3.** ∠4 and ∠3, m∠3 = _____
- **4.** ∠4 and ∠8, m∠8 = _____
- **5.** $\angle 4$ and $\angle 5$, m $\angle 5$ = _____
- **6.** $\angle 5$ and $\angle 7$, m $\angle 7$ = _____

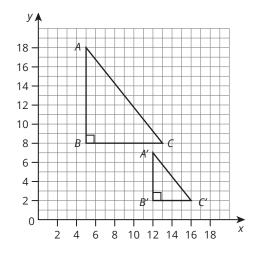
III. The Angle-Angle Similarity Theorem

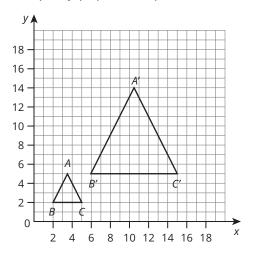

A. Use the Angle-Angle Similarity Theorem to explain how the triangles are similar.

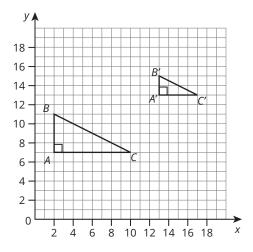
1.

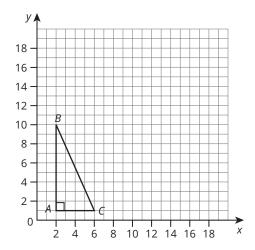
2.

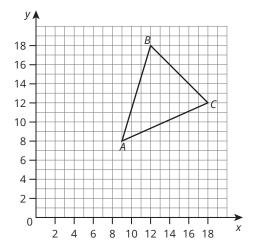


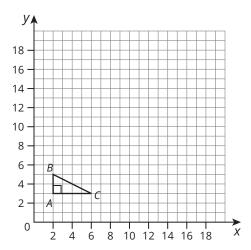

4.

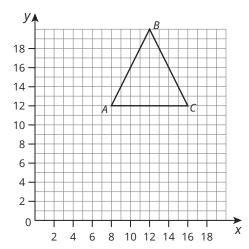

5.


6. Use patty paper or a protractor to show that if $\triangle ABC$ and $\triangle A'B'C'$ are similar triangles.


7. Use patty paper or a protractor to show that if $\triangle ABC$ and $\triangle A'B'C'$ are similar triangles.


8. Use patty paper or a protractor to show that if $\triangle ABC$ and $\triangle A'B'C'$ are similar triangles.


9. Dilate $\triangle ABC$ to form $\triangle DEF$ using the origin as the center of dilation and a scale factor of 2. Show that $\triangle ABC$ is similar to $\triangle DEF$ using patty paper or a protractor.


10. Dilate $\triangle ABC$ to form $\triangle DEF$ using the origin as the center of dilation and a scale factor of $\frac{1}{2}$. Show that $\triangle ABC$ is similar to $\triangle DEF$ using patty paper or a protractor.

11. Dilate $\triangle ABC$ to form $\triangle DEF$ using the origin as the center of dilation and a scale factor of 2. Show that $\triangle ABC$ is similar to $\triangle DEF$ using patty paper or a protractor.

12. Dilate $\triangle ABC$ to form $\triangle DEF$ using the origin as the center of dilation and a scale factor of $\frac{1}{4}$. Show that $\triangle ABC$ is similar to $\triangle DEF$ using patty paper or a protractor.

