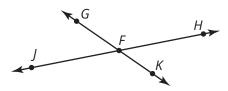
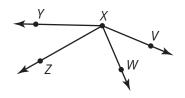
Write

Define each term in your own words.

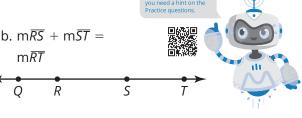
- 1. counterexample
- 2. conditional statement
- 3. truth value
- 4. truth table

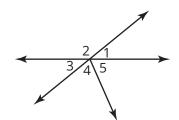

Remember

A conditional statement is a statement that can be written in the form "if p, then q." Written as $p \rightarrow q$, it is read "p implies q." The variable p represents the hypothesis and the variable qrepresents the conclusion.


Truth tables are used to organize truth values of conditional statements. A postulate is a statement that is accepted without proof. A theorem is a statement that can be proven.

Practice


- 1. Write the postulate that confirms each statement.
 - a. Angles GFH and KFH are supplementary angles.


c. $m \angle WXZ + m \angle ZXY = m \angle WXY$

b. $m\overline{RS} + m\overline{ST} =$ m*RT*

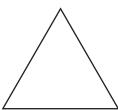
d. $m \angle 1 + m \angle 2 = 180^{\circ}$

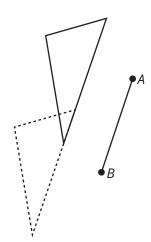
- 2. Complete a truth table for the conditional statements.
 - a. If $\angle 1$ and $\angle 2$ are vertical angles, then $\angle 1 \cong \angle 2$.
 - b. If $m \angle 1 = 90^{\circ}$, then $\angle 1$ is a right angle.
 - c. If $\overrightarrow{AB} \parallel \overrightarrow{CD}$, then \overrightarrow{AB} does not intersect \overrightarrow{CD} .
 - d. If a shape is a square, then the shape has four equal sides.

Stretch

Let the variable *p* represent the statement "the figure is a square" and let the variable *q* represent the statement "the figure is a quadrilateral." Complete a truth table for the statements, then determine if conditional statements are commutative, that is $p \to q$ is the same as $q \to p$, by completing a truth table for $q \rightarrow p$.

Review


- 1. Complete each rotation given the function.
 - a. $R_{\chi_{-65}}(\overline{AB})$



2. Determine how many lines of symmetry the equilateral triangle has. Then draw the lines of symmetry.

3. Write a function to describe the translation.

- 4. Write the equation of a line that passes through the point (-8, 2) and is parallel to the line 3x 2y = 12.
- 5. Write the equation of a line that passes through the point (5, -7) and is perpendicular to the line -2x + 6y = -4.